Cyclic Proofs of Program Termination
Richard Bornat, James Brotherston and Cristiano Calcagno

Simon Docherty
PPLV Cyclic Proof Reading Group

Tuesday 9th December

1/41



Pre-Talk Disclaimer

» Unlike the speakers in the previous two sessions, | am not
presenting my own work today

» The paper is Richard Bornat, James Brotherston, Cristiano
Calcalgno. Cyclic Proofs of Program Termination in Separation
Logic, POPL 2008.

> Extensive further development by Reuben Rowe.
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This Talk

1. A short introduction to Bl and Separation Logic;

2. A concrete example of inductive predicates and their
relationship to cyclic proof (recall first session!);

3. A novel application of cyclic proof in computer science:
program termination proofs.

Goal of the talk
Make paper accessible for you.
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Program Logics: The Basic Idea

‘Computer programming is an exact science in that all the
properties of a program and the consequences of
executing it in a given environment can, in principle, be
found out from the text of the program itself by means of
purely deductive reasoning.’ Tony Hoare

4/41



Hoare Logic and Heaps
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(Floyd-)Hoare Logic: The Basic Idea

1PrCQ}
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Some Rules of Hoare Logic

-{P|E/z|}z .= E{P}



Some Rules of Hoare Logic

- {P N B}C{P}
- {P}while B do C{—B A P}




Rule of Constancy

- {Pre{@}
- {P ARYC{Q A R}

where C does not assign to any free variables in R
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Hoare Logic and Heaps
00000080

Pointers and Heaps

> Pointers: special variables that store a memory address so
contents can be referenced.

9y Y
[
> The heap is the part of memory set aside for pointer

declarations.

» Memory addresses can contain pointers = build mutable data
structures in the heap

T Y

4 nil
[ ] >® >® >
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The Problem with Pointers

» Memory management in hands of programmers — powerful
when used correctly, but cause of numerous bugs.

» Hoare logic doesn’t handle them well.

{dz.x > z}[x] == 4{x — 4}

{y—» 3AdzxH z}[x] =4{y » 3 A X — 4}

> Legal application of constancy - however invalid conclusion if x
and y aliased!

» Clumsy fix: propagate anti-aliasing preconditions x # y. Scales
badly.

> More sophisticated issues arise for mutable data structures
(see Reynolds 2002).
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Separation Logic
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Diagnosing the problem

There is a mismatch between simple intuitions about the
way that pointer operations work and the complexity of
their axiomatic treatments. . . we suggest that the source of
this mismatch is the global view of state taken in most
formalisms for reasoning about pointers.’

Peter O’'Hearn, John Reynolds and Hongseok Yang
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Separation Logic
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From Classical Logic to...?

)

WA

Phoenix

(...Walking the tightrope of
logic... There's no room for
a false step!)
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Separation Logic
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The Logic of Bunched Implications

Pym & O’Hearn 1999: a substructural logic with:

» Standard connectives A, —, T and resource-sensitive
connectives *, -, Emp;

> Kripke semantics on partial commutative monoids of resources
(X,0,€);

> Proof theory with tree-shaped contexts called bunches (two
context formers, one associated to A, one to *)

Feory (R Loty

2 mrese B ey

> Resource sensitivity: the comma context former does not
satisfy contraction or weakening = number and kind of
formulae joined by commas matters.
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Separation Logic
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A Stack and Heap Model of Bl

> A stack s assigns program variables x to values and memory
addresses s : Var — Val U Loc

> A heap his an allocation of values to finitely many memory
addresses h : Loc —¢p, Val

> If dom(h)ndom(h’)=0,hoh” landhoh’=huh.

> []is the empty heap (no heap memory allocated).

» (Stack x Heap, o, []) is @ model of Bl.

» This model gives an assertion language for Separation Logic.
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Semantics of the Assertion Language
s,he E=FEiff [E]s = [E']

s,sheonyiffs,hepands, hey
sS,he—giffs,hegp

vV v. vy

s, h e Ax.p(x) iff there exists t s.t. s[x — ], h £ ¢(1)
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Separation Logic
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Semantics of the Assertion Language

vV Vv vV V. Y VvV VY

s,he E=FEiff [E]ls =[E’]
s,sheonyiffs,hepands, hey

s,he—giffs,he g

s, h £ dx.¢(x) iff there exists t s.t. s[x ], h E ¢(f)

s,h e x - yiff dom(h) = {s(x)} and h(s(x)) = s(y)
S,Shep=yiffh=h"oh”, s,h"Epands,h” ey
s,hep-yiffhoh” | and s, h’ k£ ¢ implies s,ho h' £y
s,heEmpiff h =]
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Separation Logic
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The Semantics, Pictorially

s,hExr—yxy—x

s(z) s(y) s(z) s(y) , s(z) s(y)
o

*o — o6—

N N
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The Semantics, Pictorially

s,hiFxr—=yxy—zx

)iS(y)
\

s(x
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The Semantics, Pictorially

s, || F Emp
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Separation Logic
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The Semantics, Pictorially

s,[| Fx+— y - —-Emp
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Small Axioms

> Axioms dealing with the basic pointer operations

- (52.F — z}|E] = F{E — F}

- {dx.E — x}dispose(E){Emp}



Separation Logic
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The Frame Rule

> Separation Logic has a sound version of the rule of constancy,

F{PYO{Q)
F{Px R}C{Q * R}

where C does not assign to any free variables in R
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Separation Logic
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More Features of Separation Logic

> Tight interpretation: {P}C{Q} valid implies C doesn’t touch
memory not mentioned in P.

» Compositionality: use frame rule to build procedure proof out of
subprocedure proofs;

» Expressive decidable fragments;

> Scalability: all of the above + more (out of scope of talk) =
industrial strength automated analysis http://fbinfer.com.
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http://fbinfer.com

Separation Logic
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Half-time Summary

—

\BIBICM‘
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Inductive Predicates
000000

What about those mutable data structures?

®ox

o<

o
3
.
o~
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Inductive Predicates
000000

What about those mutable data structures?

T Y z nil ?
[ g >@ »>
®

» Most important use of pointers: defining mutable data
structures.

» Assertion Language + Inductive Predicates = assertions
describing datatypes for mutable data structures.

» Want: s, h £ Is x nil iff h is a nil-terminated linked list from s(x).
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Inductive Predicates
000000

Inductive Predicates, Formally

Definition (Inductive Definition)

An inductive definition of an inductive predicate symbol P is a finite
set of production rules Cj(X) = Pt;(X), where C; is built according to:

| C(X) A C(X) | C(X) = C(X) |
$(X) = C(X) | ¢(X) + C(X) | ¥xC(X)

» ¢: any predicate Bl formula not involving inductive predicate
symbols.

» Simplified slightly here (P can range over all inductive
predicate symbols usually)
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Inductive Predicates
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A Simple Example: List Segments

> Base case: the empty list is considered an empty list segment
from any x to x:
Emp = Is xx

X
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Inductive Predicates
000000

A Simple Example: List Segments

> Base case: the empty list is considered an empty list segment
from any x to x:
Emp = Is xx

X

> Inductive step: list segment + separately in memory a pointer
to its startpoint is a list segment:

x> X' xls X'y = Is xy

/
f lsxi‘
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Interpreting an Inductive Predicate

> P an inductive predicate with production rules
Ci(x3) = Pt(x7),..., Ck(Xk) = Pt(Xk).

Op(X) = | ((h, I5(@A)) | sI% + dl. h Epex G

1<j<k
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Interpreting an Inductive Predicate
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consequent P(x)...
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Interpreting an Inductive Predicate

> P an inductive predicate with production rules

Ci (%) = PH(X3), ..., Ck(Xk) = Plc(Xi).
Op(X) = | ((h IE(A) | SI% > dI, h epex Gi(%))
1<j<k

> For each production rule C;(X) = P(x))...

> The tuples: heap h together with evaluated terms from the
consequent P(x)...

» Such that for any stack s that evaluates the terms that way...

> s, h satisfies the antecedent C;(x;) when P is interpreted as X

s (X) ={([I. (v, v) | v € Val} U
{(hy o ho, (v, V')) | Aw € Val.hy = {(v, w)} and (ho, (w, V")) € X}
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Inductive Predicates
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Least Fixed Point by Approximation

» ®p is monotone on the lattice of predicates = has a least fixed
point.

> Define Ifp interpretation for P by ordinal induction:

®% :=0p (@)
q)(’;+1 .:_(DP((Da)
of = o
p<a

> [P1 = U, D%: s, h E PHX) iff (h, [T1) € [PI.

» Ordinal approximations are why the cyclic system works!
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Cyclic Proofs of Program Termination
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A Simple Example: Linked-List Traversal

Cond :: E=E|E+E
C:= x:=E|x:=[E]|[E]:=E|x :=new() | free(E) |
if Cond goto i | stop
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A Simple Example: Linked-List Traversal
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1. if x = nil goto 4; 2. x = [x]; 3. goto 1; 4. stop
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A Simple Example: Linked-List Traversal

Cond :: E=E|E+E
C:= x:=E|x:=[E]|[E]:=E|x :=new() | free(E) |
if Cond goto i | stop

Consider the following program
1. if x = nil goto 4; 2. x = [x]; 3. goto 1; 4. stop

T Y z
[ ] [ ] [ ]

®\/
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A Simple Example: Linked-List Traversal

Cond :: E=E|E+E
C:= x:=E|x:=[E]|[E]:=E|x :=new() | free(E) |
if Cond goto i | stop

Consider the following program
1. if x = nil goto 4; 2. x = [x]; 3. goto 1; 4. stop

x Yy z x Yy z
( ( [ ] o [} (]

®\/

nil
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Cyclic Proofs of Program Termination
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The Key Idea

» Given program C, (i, s, h) | means C will terminate if state is
(s, h) on i-th instruction.

> Previous slide: termination could be deduced from the shape of
the heap.
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Cyclic Proofs of Program Termination
00®000000000

The Key Ildea

» Given program C, (i, s, h) | means C will terminate if state is
(s, h) on i-th instruction.

> Previous slide: termination could be deduced from the shape of
the heap.

> ldea: given program C prove that formula F is such that
(s, h) £ F implies C terminates if started in state (s, h).

» How to prove? With a cyclic system!
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Road Map

1. Judgements I +;|: where bunch I = assertion about heap;
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Road Map

Judgements I' ;| : where bunch I' = assertion about heap;
Proof rules symbolically execute program;
Path in proof graph = execution trace

Cycle = program has got back to same instruction with a heap
with same shape again;

Mo n =~

31/41



Cyclic Proofs of Program Termination
000®00000000

Road Map

Judgements I' ;| : where bunch I' = assertion about heap;
Proof rules symbolically execute program;
Path in proof graph = execution trace

Cycle = program has got back to same instruction with a heap
with same shape again;

Mo n =~

5. Unfolding an inductive predicate infinitely often = progressing
through heap description = infinite descending chain of
approximations = that infinite execution trace is contradictory.

31/41



Cyclic Proofs of Program Termination
000®00000000

Road Map

Judgements I' ;| : where bunch I' = assertion about heap;
Proof rules symbolically execute program;
Path in proof graph = execution trace

Cycle = program has got back to same instruction with a heap
with same shape again;

Mo n =~

5. Unfolding an inductive predicate infinitely often = progressing
through heap description = infinite descending chain of
approximations = that infinite execution trace is contradictory.

6. 1 cyclic proof = there are only finite execution traces =
program terminates.

31/41



Cyclic Proofs of Program Termination
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A Snapshot of the System: Execution Rules

Cond;T' ;] —~Cond; T |_i+1¢ci = if Cond goto j
'l

Eo— E1, Tl
Ey — t, r l_z\L

Ci = [Eo] = El

C; = stop

[l
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Cyclic Proofs of Program Termination
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Example of Inductive Predicate Rules

> Brotherston & Simpson: schema for turning production rules
into a case-split rule for a cyclic system.

> Occurence of an inductive predicate = unfold into antecedents
of production rules.

> For list segment predicate:

['(t=wu;emp) ;| T(t—z *xlsz' u) ;]
L(lstu) il

(Case ls)
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Snapshot Continued: Logical Rules

> Logical rules are based on Bl’'s bunched sequent calculus.

> Key difference: multiplicative weakening holds for termination
judgements:

I'(A) il
LA AN ]

(WkM)

> Why?
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Snapshot Continued: Logical Rules

> Logical rules are based on Bl’'s bunched sequent calculus.

> Key difference: multiplicative weakening holds for termination
judgements:

I'(A) il
LA AN ]

(WKM)
> Why?
Proposition (Termination Montonocity)

If(i,s, h) | and h o h” defined, then (i,s,ho h’) | O
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Cyclic Proofs of Program Termination
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Soundness Condition

> Cycles aren’t always sound in cyclic systems: need a
correctness condition.

» Trace: sequence of formulae through preproof graph meeting
some basic (but lengthy) requirements

> Infinitely progressing trace: infinite trace on which inductive
predicates are unfolded infinitely often.
Definition (Proof)

Preproof in which every infinite path is followed by an infinitely
progressing trace.
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Cyclic Proof of Linked-List Traversal Termination

lsznill]

—— goto1
lsznil 3]

- . (WkM)
z' — x,lsznil 3|

(
z # nil; (" — z,lsznil) 3]

z=2g'";z #nil; (" — 2',lsz nil) 3]

; ) " n T T = [z]
1;z = nil;emp 2| z # nil; (z — 2, ls 2’ nil) 2|
—
x # nil;z = nil;emp 2| z #nil;z oz’ x sz’ nil 2]
stop (Case [s)
z =nil;lsznil k4] z # nil; sz nil Fo|
if z = nilgoto4
lsznil ]
[
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Why does it work?

> Key property is soundness: if F +;] then for all (s, h), s,h e F
implies (i, s, h) |.
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Why does it work?

> Key property is soundness: if F +;] then for all (s, h), s,h e F
implies (i, s, h) |.

> Suppose proof of I ;| but exists (s, h) such that s, h £ I" and
(i,s, h) 1.

» Along each infinite path: infinite sequence of (s;, h;) invalidating
each sequent ['; +;| in trace.

> s,h Eppe [if s, h satisfies ' when ®%, substituted for [P]

> Infinite sequence (a;): least such a for which s;, hj Eppo T

Proposition
(aj) is an infinite decreasing sequence. At predicate unfolding steps,
strictly decreasing. |

» Contradiction!
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Pros and Cons

Pros:

> Termination measures handled implicitly by system (versus
explicit definition)

> Implementable (and it has been!)
> Pretty cool!
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000000000080
Pros and Cons

Pros:
> Termination measures handled implicitly by system (versus
explicit definition)
> Implementable (and it has been!)
> Pretty cool!
Cons:
» No magic: no decision procedure for any class of programs

> Where to find candidate heap description? (addressed in
Brotherston and Gorogiannis - Cyclic Abduction of Inductively
Defined Safety and Termination Preconditions)

> Need to compile programs into indexed instructions
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Where next?

» Linked-list traversal example is v basic — more sophisticated
examples in the paper!

> Substantially built upon in Reuben N.S. Rowe and James
Brotherston. Automatic Cyclic Termination Proofs for Recursive
Procedures in Separation Logic. CPP 2017.

> In that paper: cyclic proofs of total correctness: i.e. termination
guarantee and postconditions; implementation.
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Conclusions

> Separation Logic = Hoare logic variant with a substructural
assertion language describing spatial properties of memory,
together with rules for (de)allocation and framing.

> Good qualities: assertion language semantics handles aliasing,
facilitates local reasoning, decision procedures for expressive
fragments = scalable (http://fbinfer. com).

> Natural use of cyclic proof: shape properties defined via
inductive predicates = reason about entailment using cyclic
systems.

> Novel application of cyclic proof: proofs of termination for
programs that are fed the right heap.

40/ 41


http://fbinfer.com

Conclusions
00®

Further Reading

> Pym, O’Hearn. The Logic of Bunched Implications. 1999.

> Ishtiag, O’Hearn. Bl as an Assertion Language for Mutable
Data Structures. 2001.

> Reynolds. Separation Logic: A Logic for Shared Mutable Data
Structures 2001.

> Brotherston. Formalised Inductive Reasoning in the Logic of
Bunched Implications. 2007.

> Bornat, Brotherston, Calcagno. Cyclic Proofs of Program
Termination in Separation Logic. 2008.

> Rowe, Brotherston. Automatic Cyclic Termination Proofs for
Recursive Procedures in Separation Logic. 2017.
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