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Pre-Talk Disclaimer

I Unlike the speakers in the previous two sessions, I am not
presenting my own work today

I The paper is Richard Bornat, James Brotherston, Cristiano
Calcalgno. Cyclic Proofs of Program Termination in Separation
Logic, POPL 2008.

I Extensive further development by Reuben Rowe.

I .....so if I say something stupid about your work, stop me :)
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This Talk

1. A short introduction to BI and Separation Logic;

2. A concrete example of inductive predicates and their
relationship to cyclic proof (recall first session!);

3. A novel application of cyclic proof in computer science:
program termination proofs.

Goal of the talk
Make paper accessible for you.
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Program Logics: The Basic Idea

‘Computer programming is an exact science in that all the
properties of a program and the consequences of
executing it in a given environment can, in principle, be
found out from the text of the program itself by means of
purely deductive reasoning.’ Tony Hoare
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(Floyd-)Hoare Logic: The Basic Idea
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Some Rules of Hoare Logic
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Some Rules of Hoare Logic
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Rule of Constancy

where C does not assign to any free variables in R
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Pointers and Heaps

I Pointers: special variables that store a memory address so
contents can be referenced.

I The heap is the part of memory set aside for pointer
declarations.

I Memory addresses can contain pointers⇒ build mutable data
structures in the heap
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The Problem with Pointers

I Memory management in hands of programmers – powerful
when used correctly, but cause of numerous bugs.

I Hoare logic doesn’t handle them well.

{∃z.x 7→ z}[x] := 4{x 7→ 4}

{y 7→ 3 ∧ ∃z.x 7→ z}[x] := 4{y 7→ 3 ∧ x 7→ 4}

I Legal application of constancy - however invalid conclusion if x
and y aliased!

I Clumsy fix: propagate anti-aliasing preconditions x , y. Scales
badly.

I More sophisticated issues arise for mutable data structures
(see Reynolds 2002).
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Diagnosing the problem

‘There is a mismatch between simple intuitions about the
way that pointer operations work and the complexity of
their axiomatic treatments. . . we suggest that the source of
this mismatch is the global view of state taken in most
formalisms for reasoning about pointers.’

Peter O’Hearn, John Reynolds and Hongseok Yang
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From Classical Logic to...?
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The Logic of Bunched Implications

Pym & O’Hearn 1999: a substructural logic with:
I Standard connectives ∧,→,> and resource-sensitive

connectives ∗,−∗,Emp;
I Kripke semantics on partial commutative monoids of resources

(X , ◦, e);
I Proof theory with tree-shaped contexts called bunches (two

context formers, one associated to ∧, one to ∗)

〈R→〉
Γ;ϕ ` ψ

Γ ` ϕ→ ψ
〈R−∗〉

Γ, ϕ ` ψ

Γ ` ϕ −∗ ψ
.

I Resource sensitivity: the comma context former does not
satisfy contraction or weakening⇒ number and kind of
formulae joined by commas matters.
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A Stack and Heap Model of BI

I A stack s assigns program variables x to values and memory
addresses s : Var→ Val ∪ Loc

I A heap h is an allocation of values to finitely many memory
addresses h : Loc ⇀fin Val

I If dom(h) ∩ dom(h′) = ∅, h ◦ h′ ↓ and h ◦ h′ = h t h′.
I [] is the empty heap (no heap memory allocated).
I (Stack × Heap, ◦, []) is a model of BI.
I This model gives an assertion language for Separation Logic.
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Semantics of the Assertion Language

I s, h � E = E′ iff ~E�s = ~E′�
I s, h � ϕ ∧ ψ iff s, h � ϕ and s, h � ψ
I s, h � ¬ϕ iff s, h 2 ϕ
I s, h � ∃x.ϕ(x) iff there exists t s.t. s[x 7→ t ], h � ϕ(t)

I s, h � x 7→ y iff dom(h) = {s(x)} and h(s(x)) = s(y)
I s, h � ϕ ∗ ψ iff h = h′ ◦ h′′, s, h′ � ϕ and s, h′′ � ψ
I s, h � ϕ −∗ ψ iff h ◦ h′ ↓ and s, h′ � ϕ implies s, h ◦ h′ � ψ
I s, h � Emp iff h = []
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The Semantics, Pictorially
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Small Axioms

I Axioms dealing with the basic pointer operations
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The Frame Rule

I Separation Logic has a sound version of the rule of constancy,
using ∗.

where C does not assign to any free variables in R
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More Features of Separation Logic

I Tight interpretation: {P}C{Q} valid implies C doesn’t touch
memory not mentioned in P.

I Compositionality: use frame rule to build procedure proof out of
subprocedure proofs;

I Expressive decidable fragments;
I Scalability: all of the above + more (out of scope of talk) =

industrial strength automated analysis http://fbinfer.com.
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Half-time Summary
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What about those mutable data structures?

I Most important use of pointers: defining mutable data
structures.

I Assertion Language + Inductive Predicates⇒ assertions
describing datatypes for mutable data structures.

I Want: s, h � ls x nil iff h is a nil-terminated linked list from s(x).
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Inductive Predicates, Formally

Definition (Inductive Definition)
An inductive definition of an inductive predicate symbol P is a finite
set of production rules Ci(~x)⇒ Pti(~x), where Ci is built according to:

C ::= Pt(~x) | ϕ̂(~x) | C(~x) ∧ C(~x) | C(~x) ∗ C(~x) |

ϕ̂(~x)→ C(~x) | ϕ̂(~x) −∗ C(~x) | ∀xC(~x)

I ϕ̂: any predicate BI formula not involving inductive predicate
symbols.

I Simplified slightly here (P can range over all inductive
predicate symbols usually)
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A Simple Example: List Segments

I Base case: the empty list is considered an empty list segment
from any x to x:

Emp⇒ ls xx

I Inductive step: list segment + separately in memory a pointer
to its startpoint is a list segment:

x 7→ x′ ∗ ls x′y ⇒ ls xy
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Interpreting an Inductive Predicate

I P an inductive predicate with production rules
C1( ~x1)⇒ P~t1( ~x1), . . . ,Ck ( ~xk )⇒ P~tk ( ~xk ).

ΦP (X ) =
⋃

1≤j≤k

{(h, ~~tj(~d)�) | s[~xj 7→ ~d], h �P 7→X Cj(~xj)}

I For each production rule Cj(~xj)⇒ P~tj(~xj)...
I The tuples: heap h together with evaluated terms from the

consequent P~tj(~xj)...
I Such that for any stack s that evaluates the terms that way...
I s, h satisfies the antecedent Cj(~xj) when P is interpreted as X

Φls(X ) ={([], (v , v) | v ∈ Val} ∪

{(h1 ◦ h2, (v , v′)) | ∃w ∈ Val.h1 = {(v ,w)} and (h2, (w, v′)) ∈ X}
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Least Fixed Point by Approximation

I ΦP is monotone on the lattice of predicates⇒ has a least fixed
point.

I Define lfp interpretation for P by ordinal induction:

Φ0
P ::=ΦP (~∅)

Φα+1
P ::=ΦP (ΦαP )

ΦλP ::=
⋃
β<λ

ΦβP

I ~P� =
⋃
αΦ

α
P : s, h � P~t(~x) iff (h, ~~t�) ∈ ~P�.

I Ordinal approximations are why the cyclic system works!
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A Simple Example: Linked-List Traversal

Cond ::= E = E | E , E

C ::= x := E | x := [E] | [E] := E | x := new() | free(E) |

if Cond goto i | stop

Consider the following program

1. if x = nil goto 4; 2. x := [x]; 3. goto 1; 4. stop
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The Key Idea

I Given program C, (i, s, h) ↓ means C will terminate if state is
(s, h) on i-th instruction.

I Previous slide: termination could be deduced from the shape of
the heap.

I Idea: given program C prove that formula F is such that
(s, h) � F implies C terminates if started in state (s, h).

I How to prove? With a cyclic system!
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Road Map

1. Judgements Γ `i↓: where bunch Γ ≡ assertion about heap;

2. Proof rules symbolically execute program;

3. Path in proof graph ≡ execution trace

4. Cycle⇒ program has got back to same instruction with a heap
with same shape again;

5. Unfolding an inductive predicate infinitely often = progressing
through heap description = infinite descending chain of
approximations⇒ that infinite execution trace is contradictory.

6. ∃ cyclic proof⇒ there are only finite execution traces⇒
program terminates.
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A Snapshot of the System: Execution Rules
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Example of Inductive Predicate Rules

I Brotherston & Simpson: schema for turning production rules
into a case-split rule for a cyclic system.

I Occurence of an inductive predicate⇒ unfold into antecedents
of production rules.

I For list segment predicate:
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Snapshot Continued: Logical Rules

I Logical rules are based on BI’s bunched sequent calculus.
I Key difference: multiplicative weakening holds for termination

judgements:

I Why?

Proposition (Termination Montonocity)
If (i, s, h) ↓ and h ◦ h′ defined, then (i, s, h ◦ h′) ↓ �
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Soundness Condition

I Cycles aren’t always sound in cyclic systems: need a
correctness condition.

I Trace: sequence of formulae through preproof graph meeting
some basic (but lengthy) requirements

I Infinitely progressing trace: infinite trace on which inductive
predicates are unfolded infinitely often.

Definition (Proof)
Preproof in which every infinite path is followed by an infinitely
progressing trace.
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Cyclic Proof of Linked-List Traversal Termination
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Why does it work?

I Key property is soundness: if F `i↓ then for all (s, h), s, h � F
implies (i, s, h) ↓.

I Suppose proof of Γ `i↓ but exists (s, h) such that s, h � Γ and
(i, s, h) ↑.

I Along each infinite path: infinite sequence of (si , hi) invalidating
each sequent Γi `j↓ in trace.

I s, h �P 7→Pα Γ if s, h satisfies Γ when ΦαP substituted for ~P�
I Infinite sequence (αi): least such α for which si , hi �P 7→Pα Γi

Proposition
(αi) is an infinite decreasing sequence. At predicate unfolding steps,
strictly decreasing. �

I Contradiction!
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Pros and Cons

Pros:
I Termination measures handled implicitly by system (versus

explicit definition)
I Implementable (and it has been!)
I Pretty cool!

Cons:
I No magic: no decision procedure for any class of programs
I Where to find candidate heap description? (addressed in

Brotherston and Gorogiannis - Cyclic Abduction of Inductively
Defined Safety and Termination Preconditions)

I Need to compile programs into indexed instructions
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Where next?

I Linked-list traversal example is v basic – more sophisticated
examples in the paper!

I Substantially built upon in Reuben N.S. Rowe and James
Brotherston. Automatic Cyclic Termination Proofs for Recursive
Procedures in Separation Logic. CPP 2017.

I In that paper: cyclic proofs of total correctness: i.e. termination
guarantee and postconditions; implementation.
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Conclusions

I Separation Logic = Hoare logic variant with a substructural
assertion language describing spatial properties of memory,
together with rules for (de)allocation and framing.

I Good qualities: assertion language semantics handles aliasing,
facilitates local reasoning, decision procedures for expressive
fragments⇒ scalable (http://fbinfer.com).

I Natural use of cyclic proof: shape properties defined via
inductive predicates⇒ reason about entailment using cyclic
systems.

I Novel application of cyclic proof: proofs of termination for
programs that are fed the right heap.
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Further Reading

I Pym, O’Hearn. The Logic of Bunched Implications. 1999.
I Ishtiaq, O’Hearn. BI as an Assertion Language for Mutable

Data Structures. 2001.
I Reynolds. Separation Logic: A Logic for Shared Mutable Data

Structures 2001.
I Brotherston. Formalised Inductive Reasoning in the Logic of

Bunched Implications. 2007.
I Bornat, Brotherston, Calcagno. Cyclic Proofs of Program

Termination in Separation Logic. 2008.
I Rowe, Brotherston. Automatic Cyclic Termination Proofs for

Recursive Procedures in Separation Logic. 2017.
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