
Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

Cyclic Proofs of Program Termination
Richard Bornat, James Brotherston and Cristiano Calcagno

Simon Docherty

PPLV Cyclic Proof Reading Group

Tuesday 9th December

1 / 41

Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

Pre-Talk Disclaimer

I Unlike the speakers in the previous two sessions, I am not
presenting my own work today

I The paper is Richard Bornat, James Brotherston, Cristiano
Calcalgno. Cyclic Proofs of Program Termination in Separation
Logic, POPL 2008.

I Extensive further development by Reuben Rowe.

Iso if I say something stupid about your work, stop me :)

2 / 41

Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

Pre-Talk Disclaimer

I Unlike the speakers in the previous two sessions, I am not
presenting my own work today

I The paper is Richard Bornat, James Brotherston, Cristiano
Calcalgno. Cyclic Proofs of Program Termination in Separation
Logic, POPL 2008.

I Extensive further development by Reuben Rowe.
Iso if I say something stupid about your work, stop me :)

2 / 41

Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

This Talk

1. A short introduction to BI and Separation Logic;

2. A concrete example of inductive predicates and their
relationship to cyclic proof (recall first session!);

3. A novel application of cyclic proof in computer science:
program termination proofs.

Goal of the talk
Make paper accessible for you.

3 / 41

Hoare Logic and Heaps

Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

Program Logics: The Basic Idea

‘Computer programming is an exact science in that all the
properties of a program and the consequences of
executing it in a given environment can, in principle, be
found out from the text of the program itself by means of
purely deductive reasoning.’ Tony Hoare

4 / 41

Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

(Floyd-)Hoare Logic: The Basic Idea

5 / 41

Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

Some Rules of Hoare Logic

6 / 41

Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

Some Rules of Hoare Logic

7 / 41

Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

Rule of Constancy

where C does not assign to any free variables in R

8 / 41

Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

Pointers and Heaps

I Pointers: special variables that store a memory address so
contents can be referenced.

I The heap is the part of memory set aside for pointer
declarations.

I Memory addresses can contain pointers⇒ build mutable data
structures in the heap

9 / 41

Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

The Problem with Pointers

I Memory management in hands of programmers – powerful
when used correctly, but cause of numerous bugs.

I Hoare logic doesn’t handle them well.

{∃z.x 7→ z}[x] := 4{x 7→ 4}

{y 7→ 3 ∧ ∃z.x 7→ z}[x] := 4{y 7→ 3 ∧ x 7→ 4}

I Legal application of constancy - however invalid conclusion if x
and y aliased!

I Clumsy fix: propagate anti-aliasing preconditions x , y. Scales
badly.

I More sophisticated issues arise for mutable data structures
(see Reynolds 2002).

10 / 41

Separation Logic

Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

Diagnosing the problem

‘There is a mismatch between simple intuitions about the
way that pointer operations work and the complexity of
their axiomatic treatments. . . we suggest that the source of
this mismatch is the global view of state taken in most
formalisms for reasoning about pointers.’

Peter O’Hearn, John Reynolds and Hongseok Yang

11 / 41

Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

From Classical Logic to...?

12 / 41

Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

The Logic of Bunched Implications

Pym & O’Hearn 1999: a substructural logic with:
I Standard connectives ∧,→,> and resource-sensitive

connectives ∗,−∗,Emp;
I Kripke semantics on partial commutative monoids of resources

(X , ◦, e);
I Proof theory with tree-shaped contexts called bunches (two

context formers, one associated to ∧, one to ∗)

〈R→〉
Γ;ϕ ` ψ

Γ ` ϕ→ ψ
〈R−∗〉

Γ, ϕ ` ψ

Γ ` ϕ −∗ ψ
.

I Resource sensitivity: the comma context former does not
satisfy contraction or weakening⇒ number and kind of
formulae joined by commas matters.

13 / 41

Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

A Stack and Heap Model of BI

I A stack s assigns program variables x to values and memory
addresses s : Var→ Val ∪ Loc

I A heap h is an allocation of values to finitely many memory
addresses h : Loc ⇀fin Val

I If dom(h) ∩ dom(h′) = ∅, h ◦ h′ ↓ and h ◦ h′ = h t h′.
I [] is the empty heap (no heap memory allocated).
I (Stack × Heap, ◦, []) is a model of BI.
I This model gives an assertion language for Separation Logic.

14 / 41

Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

Semantics of the Assertion Language

I s, h � E = E′ iff ~E�s = ~E′�
I s, h � ϕ ∧ ψ iff s, h � ϕ and s, h � ψ
I s, h � ¬ϕ iff s, h 2 ϕ
I s, h � ∃x.ϕ(x) iff there exists t s.t. s[x 7→ t], h � ϕ(t)

I s, h � x 7→ y iff dom(h) = {s(x)} and h(s(x)) = s(y)
I s, h � ϕ ∗ ψ iff h = h′ ◦ h′′, s, h′ � ϕ and s, h′′ � ψ
I s, h � ϕ −∗ ψ iff h ◦ h′ ↓ and s, h′ � ϕ implies s, h ◦ h′ � ψ
I s, h � Emp iff h = []

15 / 41

Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

Semantics of the Assertion Language

I s, h � E = E′ iff ~E�s = ~E′�
I s, h � ϕ ∧ ψ iff s, h � ϕ and s, h � ψ
I s, h � ¬ϕ iff s, h 2 ϕ
I s, h � ∃x.ϕ(x) iff there exists t s.t. s[x 7→ t], h � ϕ(t)
I s, h � x 7→ y iff dom(h) = {s(x)} and h(s(x)) = s(y)
I s, h � ϕ ∗ ψ iff h = h′ ◦ h′′, s, h′ � ϕ and s, h′′ � ψ
I s, h � ϕ −∗ ψ iff h ◦ h′ ↓ and s, h′ � ϕ implies s, h ◦ h′ � ψ
I s, h � Emp iff h = []

15 / 41

Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

The Semantics, Pictorially

16 / 41

Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

The Semantics, Pictorially

17 / 41

Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

The Semantics, Pictorially

18 / 41

Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

The Semantics, Pictorially

19 / 41

Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

Small Axioms

I Axioms dealing with the basic pointer operations

20 / 41

Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

The Frame Rule

I Separation Logic has a sound version of the rule of constancy,
using ∗.

where C does not assign to any free variables in R

21 / 41

Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

More Features of Separation Logic

I Tight interpretation: {P}C{Q} valid implies C doesn’t touch
memory not mentioned in P.

I Compositionality: use frame rule to build procedure proof out of
subprocedure proofs;

I Expressive decidable fragments;
I Scalability: all of the above + more (out of scope of talk) =

industrial strength automated analysis http://fbinfer.com.

22 / 41

http://fbinfer.com

Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

Half-time Summary

23 / 41

Inductive Predicates

Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

What about those mutable data structures?

I Most important use of pointers: defining mutable data
structures.

I Assertion Language + Inductive Predicates⇒ assertions
describing datatypes for mutable data structures.

I Want: s, h � ls x nil iff h is a nil-terminated linked list from s(x).

24 / 41

Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

What about those mutable data structures?

I Most important use of pointers: defining mutable data
structures.

I Assertion Language + Inductive Predicates⇒ assertions
describing datatypes for mutable data structures.

I Want: s, h � ls x nil iff h is a nil-terminated linked list from s(x).

24 / 41

Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

Inductive Predicates, Formally

Definition (Inductive Definition)
An inductive definition of an inductive predicate symbol P is a finite
set of production rules Ci(~x)⇒ Pti(~x), where Ci is built according to:

C ::= Pt(~x) | ϕ̂(~x) | C(~x) ∧ C(~x) | C(~x) ∗ C(~x) |

ϕ̂(~x)→ C(~x) | ϕ̂(~x) −∗ C(~x) | ∀xC(~x)

I ϕ̂: any predicate BI formula not involving inductive predicate
symbols.

I Simplified slightly here (P can range over all inductive
predicate symbols usually)

25 / 41

Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

A Simple Example: List Segments

I Base case: the empty list is considered an empty list segment
from any x to x:

Emp⇒ ls xx

I Inductive step: list segment + separately in memory a pointer
to its startpoint is a list segment:

x 7→ x′ ∗ ls x′y ⇒ ls xy

26 / 41

Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

A Simple Example: List Segments

I Base case: the empty list is considered an empty list segment
from any x to x:

Emp⇒ ls xx

I Inductive step: list segment + separately in memory a pointer
to its startpoint is a list segment:

x 7→ x′ ∗ ls x′y ⇒ ls xy

26 / 41

Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

Interpreting an Inductive Predicate

I P an inductive predicate with production rules
C1(~x1)⇒ P~t1(~x1), . . . ,Ck (~xk)⇒ P~tk (~xk).

ΦP (X) =
⋃

1≤j≤k

{(h, ~~tj(~d)�) | s[~xj 7→ ~d], h �P 7→X Cj(~xj)}

I For each production rule Cj(~xj)⇒ P~tj(~xj)...
I The tuples: heap h together with evaluated terms from the

consequent P~tj(~xj)...
I Such that for any stack s that evaluates the terms that way...
I s, h satisfies the antecedent Cj(~xj) when P is interpreted as X

Φls(X) ={([], (v , v) | v ∈ Val} ∪

{(h1 ◦ h2, (v , v′)) | ∃w ∈ Val.h1 = {(v ,w)} and (h2, (w, v′)) ∈ X}

27 / 41

Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

Interpreting an Inductive Predicate

I P an inductive predicate with production rules
C1(~x1)⇒ P~t1(~x1), . . . ,Ck (~xk)⇒ P~tk (~xk).

ΦP (X) =
⋃

1≤j≤k

{(h, ~~tj(~d)�) | s[~xj 7→ ~d], h �P 7→X Cj(~xj)}

I For each production rule Cj(~xj)⇒ P~tj(~xj)...

I The tuples: heap h together with evaluated terms from the
consequent P~tj(~xj)...

I Such that for any stack s that evaluates the terms that way...
I s, h satisfies the antecedent Cj(~xj) when P is interpreted as X

Φls(X) ={([], (v , v) | v ∈ Val} ∪

{(h1 ◦ h2, (v , v′)) | ∃w ∈ Val.h1 = {(v ,w)} and (h2, (w, v′)) ∈ X}

27 / 41

Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

Interpreting an Inductive Predicate

I P an inductive predicate with production rules
C1(~x1)⇒ P~t1(~x1), . . . ,Ck (~xk)⇒ P~tk (~xk).

ΦP (X) =
⋃

1≤j≤k

{(h, ~~tj(~d)�) | s[~xj 7→ ~d], h �P 7→X Cj(~xj)}

I For each production rule Cj(~xj)⇒ P~tj(~xj)...
I The tuples: heap h together with evaluated terms from the

consequent P~tj(~xj)...

I Such that for any stack s that evaluates the terms that way...
I s, h satisfies the antecedent Cj(~xj) when P is interpreted as X

Φls(X) ={([], (v , v) | v ∈ Val} ∪

{(h1 ◦ h2, (v , v′)) | ∃w ∈ Val.h1 = {(v ,w)} and (h2, (w, v′)) ∈ X}

27 / 41

Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

Interpreting an Inductive Predicate

I P an inductive predicate with production rules
C1(~x1)⇒ P~t1(~x1), . . . ,Ck (~xk)⇒ P~tk (~xk).

ΦP (X) =
⋃

1≤j≤k

{(h, ~~tj(~d)�) | s[~xj 7→ ~d], h �P 7→X Cj(~xj)}

I For each production rule Cj(~xj)⇒ P~tj(~xj)...
I The tuples: heap h together with evaluated terms from the

consequent P~tj(~xj)...
I Such that for any stack s that evaluates the terms that way...

I s, h satisfies the antecedent Cj(~xj) when P is interpreted as X

Φls(X) ={([], (v , v) | v ∈ Val} ∪

{(h1 ◦ h2, (v , v′)) | ∃w ∈ Val.h1 = {(v ,w)} and (h2, (w, v′)) ∈ X}

27 / 41

Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

Interpreting an Inductive Predicate

I P an inductive predicate with production rules
C1(~x1)⇒ P~t1(~x1), . . . ,Ck (~xk)⇒ P~tk (~xk).

ΦP (X) =
⋃

1≤j≤k

{(h, ~~tj(~d)�) | s[~xj 7→ ~d], h �P 7→X Cj(~xj)}

I For each production rule Cj(~xj)⇒ P~tj(~xj)...
I The tuples: heap h together with evaluated terms from the

consequent P~tj(~xj)...
I Such that for any stack s that evaluates the terms that way...
I s, h satisfies the antecedent Cj(~xj) when P is interpreted as X

Φls(X) ={([], (v , v) | v ∈ Val} ∪

{(h1 ◦ h2, (v , v′)) | ∃w ∈ Val.h1 = {(v ,w)} and (h2, (w, v′)) ∈ X}

27 / 41

Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

Interpreting an Inductive Predicate

I P an inductive predicate with production rules
C1(~x1)⇒ P~t1(~x1), . . . ,Ck (~xk)⇒ P~tk (~xk).

ΦP (X) =
⋃

1≤j≤k

{(h, ~~tj(~d)�) | s[~xj 7→ ~d], h �P 7→X Cj(~xj)}

I For each production rule Cj(~xj)⇒ P~tj(~xj)...
I The tuples: heap h together with evaluated terms from the

consequent P~tj(~xj)...
I Such that for any stack s that evaluates the terms that way...
I s, h satisfies the antecedent Cj(~xj) when P is interpreted as X

Φls(X) ={([], (v , v) | v ∈ Val} ∪

{(h1 ◦ h2, (v , v′)) | ∃w ∈ Val.h1 = {(v ,w)} and (h2, (w, v′)) ∈ X}

27 / 41

Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

Least Fixed Point by Approximation

I ΦP is monotone on the lattice of predicates⇒ has a least fixed
point.

I Define lfp interpretation for P by ordinal induction:

Φ0
P ::=ΦP (~∅)

Φα+1
P ::=ΦP (ΦαP)

ΦλP ::=
⋃
β<λ

ΦβP

I ~P� =
⋃
αΦ

α
P : s, h � P~t(~x) iff (h, ~~t�) ∈ ~P�.

I Ordinal approximations are why the cyclic system works!

28 / 41

Cyclic Proofs of Program Termination

Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

A Simple Example: Linked-List Traversal

Cond ::= E = E | E , E

C ::= x := E | x := [E] | [E] := E | x := new() | free(E) |

if Cond goto i | stop

Consider the following program

1. if x = nil goto 4; 2. x := [x]; 3. goto 1; 4. stop

29 / 41

Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

A Simple Example: Linked-List Traversal

Cond ::= E = E | E , E

C ::= x := E | x := [E] | [E] := E | x := new() | free(E) |

if Cond goto i | stop

Consider the following program

1. if x = nil goto 4; 2. x := [x]; 3. goto 1; 4. stop

29 / 41

Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

A Simple Example: Linked-List Traversal

Cond ::= E = E | E , E

C ::= x := E | x := [E] | [E] := E | x := new() | free(E) |

if Cond goto i | stop

Consider the following program

1. if x = nil goto 4; 2. x := [x]; 3. goto 1; 4. stop

29 / 41

Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

A Simple Example: Linked-List Traversal

Cond ::= E = E | E , E

C ::= x := E | x := [E] | [E] := E | x := new() | free(E) |

if Cond goto i | stop

Consider the following program

1. if x = nil goto 4; 2. x := [x]; 3. goto 1; 4. stop

29 / 41

Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

The Key Idea

I Given program C, (i, s, h) ↓ means C will terminate if state is
(s, h) on i-th instruction.

I Previous slide: termination could be deduced from the shape of
the heap.

I Idea: given program C prove that formula F is such that
(s, h) � F implies C terminates if started in state (s, h).

I How to prove? With a cyclic system!

30 / 41

Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

The Key Idea

I Given program C, (i, s, h) ↓ means C will terminate if state is
(s, h) on i-th instruction.

I Previous slide: termination could be deduced from the shape of
the heap.

I Idea: given program C prove that formula F is such that
(s, h) � F implies C terminates if started in state (s, h).

I How to prove? With a cyclic system!

30 / 41

Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

Road Map

1. Judgements Γ `i↓: where bunch Γ ≡ assertion about heap;

2. Proof rules symbolically execute program;

3. Path in proof graph ≡ execution trace

4. Cycle⇒ program has got back to same instruction with a heap
with same shape again;

5. Unfolding an inductive predicate infinitely often = progressing
through heap description = infinite descending chain of
approximations⇒ that infinite execution trace is contradictory.

6. ∃ cyclic proof⇒ there are only finite execution traces⇒
program terminates.

31 / 41

Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

Road Map

1. Judgements Γ `i↓: where bunch Γ ≡ assertion about heap;

2. Proof rules symbolically execute program;

3. Path in proof graph ≡ execution trace

4. Cycle⇒ program has got back to same instruction with a heap
with same shape again;

5. Unfolding an inductive predicate infinitely often = progressing
through heap description = infinite descending chain of
approximations⇒ that infinite execution trace is contradictory.

6. ∃ cyclic proof⇒ there are only finite execution traces⇒
program terminates.

31 / 41

Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

Road Map

1. Judgements Γ `i↓: where bunch Γ ≡ assertion about heap;

2. Proof rules symbolically execute program;

3. Path in proof graph ≡ execution trace

4. Cycle⇒ program has got back to same instruction with a heap
with same shape again;

5. Unfolding an inductive predicate infinitely often = progressing
through heap description = infinite descending chain of
approximations⇒ that infinite execution trace is contradictory.

6. ∃ cyclic proof⇒ there are only finite execution traces⇒
program terminates.

31 / 41

Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

Road Map

1. Judgements Γ `i↓: where bunch Γ ≡ assertion about heap;

2. Proof rules symbolically execute program;

3. Path in proof graph ≡ execution trace

4. Cycle⇒ program has got back to same instruction with a heap
with same shape again;

5. Unfolding an inductive predicate infinitely often = progressing
through heap description = infinite descending chain of
approximations⇒ that infinite execution trace is contradictory.

6. ∃ cyclic proof⇒ there are only finite execution traces⇒
program terminates.

31 / 41

Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

Road Map

1. Judgements Γ `i↓: where bunch Γ ≡ assertion about heap;

2. Proof rules symbolically execute program;

3. Path in proof graph ≡ execution trace

4. Cycle⇒ program has got back to same instruction with a heap
with same shape again;

5. Unfolding an inductive predicate infinitely often = progressing
through heap description = infinite descending chain of
approximations⇒ that infinite execution trace is contradictory.

6. ∃ cyclic proof⇒ there are only finite execution traces⇒
program terminates.

31 / 41

Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

Road Map

1. Judgements Γ `i↓: where bunch Γ ≡ assertion about heap;

2. Proof rules symbolically execute program;

3. Path in proof graph ≡ execution trace

4. Cycle⇒ program has got back to same instruction with a heap
with same shape again;

5. Unfolding an inductive predicate infinitely often = progressing
through heap description = infinite descending chain of
approximations⇒ that infinite execution trace is contradictory.

6. ∃ cyclic proof⇒ there are only finite execution traces⇒
program terminates.

31 / 41

Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

A Snapshot of the System: Execution Rules

32 / 41

Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

Example of Inductive Predicate Rules

I Brotherston & Simpson: schema for turning production rules
into a case-split rule for a cyclic system.

I Occurence of an inductive predicate⇒ unfold into antecedents
of production rules.

I For list segment predicate:

33 / 41

Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

Snapshot Continued: Logical Rules

I Logical rules are based on BI’s bunched sequent calculus.
I Key difference: multiplicative weakening holds for termination

judgements:

I Why?

Proposition (Termination Montonocity)
If (i, s, h) ↓ and h ◦ h′ defined, then (i, s, h ◦ h′) ↓ �

34 / 41

Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

Snapshot Continued: Logical Rules

I Logical rules are based on BI’s bunched sequent calculus.
I Key difference: multiplicative weakening holds for termination

judgements:

I Why?

Proposition (Termination Montonocity)
If (i, s, h) ↓ and h ◦ h′ defined, then (i, s, h ◦ h′) ↓ �

34 / 41

Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

Soundness Condition

I Cycles aren’t always sound in cyclic systems: need a
correctness condition.

I Trace: sequence of formulae through preproof graph meeting
some basic (but lengthy) requirements

I Infinitely progressing trace: infinite trace on which inductive
predicates are unfolded infinitely often.

Definition (Proof)
Preproof in which every infinite path is followed by an infinitely
progressing trace.

35 / 41

Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

Cyclic Proof of Linked-List Traversal Termination

36 / 41

Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

Why does it work?

I Key property is soundness: if F `i↓ then for all (s, h), s, h � F
implies (i, s, h) ↓.

I Suppose proof of Γ `i↓ but exists (s, h) such that s, h � Γ and
(i, s, h) ↑.

I Along each infinite path: infinite sequence of (si , hi) invalidating
each sequent Γi `j↓ in trace.

I s, h �P 7→Pα Γ if s, h satisfies Γ when ΦαP substituted for ~P�
I Infinite sequence (αi): least such α for which si , hi �P 7→Pα Γi

Proposition
(αi) is an infinite decreasing sequence. At predicate unfolding steps,
strictly decreasing. �

I Contradiction!

37 / 41

Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

Why does it work?

I Key property is soundness: if F `i↓ then for all (s, h), s, h � F
implies (i, s, h) ↓.

I Suppose proof of Γ `i↓ but exists (s, h) such that s, h � Γ and
(i, s, h) ↑.

I Along each infinite path: infinite sequence of (si , hi) invalidating
each sequent Γi `j↓ in trace.

I s, h �P 7→Pα Γ if s, h satisfies Γ when ΦαP substituted for ~P�
I Infinite sequence (αi): least such α for which si , hi �P 7→Pα Γi

Proposition
(αi) is an infinite decreasing sequence. At predicate unfolding steps,
strictly decreasing. �

I Contradiction!

37 / 41

Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

Why does it work?

I Key property is soundness: if F `i↓ then for all (s, h), s, h � F
implies (i, s, h) ↓.

I Suppose proof of Γ `i↓ but exists (s, h) such that s, h � Γ and
(i, s, h) ↑.

I Along each infinite path: infinite sequence of (si , hi) invalidating
each sequent Γi `j↓ in trace.

I s, h �P 7→Pα Γ if s, h satisfies Γ when ΦαP substituted for ~P�
I Infinite sequence (αi): least such α for which si , hi �P 7→Pα Γi

Proposition
(αi) is an infinite decreasing sequence. At predicate unfolding steps,
strictly decreasing. �

I Contradiction!

37 / 41

Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

Why does it work?

I Key property is soundness: if F `i↓ then for all (s, h), s, h � F
implies (i, s, h) ↓.

I Suppose proof of Γ `i↓ but exists (s, h) such that s, h � Γ and
(i, s, h) ↑.

I Along each infinite path: infinite sequence of (si , hi) invalidating
each sequent Γi `j↓ in trace.

I s, h �P 7→Pα Γ if s, h satisfies Γ when ΦαP substituted for ~P�

I Infinite sequence (αi): least such α for which si , hi �P 7→Pα Γi

Proposition
(αi) is an infinite decreasing sequence. At predicate unfolding steps,
strictly decreasing. �

I Contradiction!

37 / 41

Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

Why does it work?

I Key property is soundness: if F `i↓ then for all (s, h), s, h � F
implies (i, s, h) ↓.

I Suppose proof of Γ `i↓ but exists (s, h) such that s, h � Γ and
(i, s, h) ↑.

I Along each infinite path: infinite sequence of (si , hi) invalidating
each sequent Γi `j↓ in trace.

I s, h �P 7→Pα Γ if s, h satisfies Γ when ΦαP substituted for ~P�
I Infinite sequence (αi): least such α for which si , hi �P 7→Pα Γi

Proposition
(αi) is an infinite decreasing sequence. At predicate unfolding steps,
strictly decreasing. �

I Contradiction!

37 / 41

Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

Why does it work?

I Key property is soundness: if F `i↓ then for all (s, h), s, h � F
implies (i, s, h) ↓.

I Suppose proof of Γ `i↓ but exists (s, h) such that s, h � Γ and
(i, s, h) ↑.

I Along each infinite path: infinite sequence of (si , hi) invalidating
each sequent Γi `j↓ in trace.

I s, h �P 7→Pα Γ if s, h satisfies Γ when ΦαP substituted for ~P�
I Infinite sequence (αi): least such α for which si , hi �P 7→Pα Γi

Proposition
(αi) is an infinite decreasing sequence. At predicate unfolding steps,
strictly decreasing. �

I Contradiction!

37 / 41

Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

Why does it work?

I Key property is soundness: if F `i↓ then for all (s, h), s, h � F
implies (i, s, h) ↓.

I Suppose proof of Γ `i↓ but exists (s, h) such that s, h � Γ and
(i, s, h) ↑.

I Along each infinite path: infinite sequence of (si , hi) invalidating
each sequent Γi `j↓ in trace.

I s, h �P 7→Pα Γ if s, h satisfies Γ when ΦαP substituted for ~P�
I Infinite sequence (αi): least such α for which si , hi �P 7→Pα Γi

Proposition
(αi) is an infinite decreasing sequence. At predicate unfolding steps,
strictly decreasing. �

I Contradiction!
37 / 41

Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

Pros and Cons

Pros:
I Termination measures handled implicitly by system (versus

explicit definition)
I Implementable (and it has been!)
I Pretty cool!

Cons:
I No magic: no decision procedure for any class of programs
I Where to find candidate heap description? (addressed in

Brotherston and Gorogiannis - Cyclic Abduction of Inductively
Defined Safety and Termination Preconditions)

I Need to compile programs into indexed instructions

38 / 41

Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

Pros and Cons

Pros:
I Termination measures handled implicitly by system (versus

explicit definition)
I Implementable (and it has been!)
I Pretty cool!

Cons:
I No magic: no decision procedure for any class of programs
I Where to find candidate heap description? (addressed in

Brotherston and Gorogiannis - Cyclic Abduction of Inductively
Defined Safety and Termination Preconditions)

I Need to compile programs into indexed instructions

38 / 41

Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

Where next?

I Linked-list traversal example is v basic – more sophisticated
examples in the paper!

I Substantially built upon in Reuben N.S. Rowe and James
Brotherston. Automatic Cyclic Termination Proofs for Recursive
Procedures in Separation Logic. CPP 2017.

I In that paper: cyclic proofs of total correctness: i.e. termination
guarantee and postconditions; implementation.

39 / 41

Conclusions

Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

Conclusions

I Separation Logic = Hoare logic variant with a substructural
assertion language describing spatial properties of memory,
together with rules for (de)allocation and framing.

I Good qualities: assertion language semantics handles aliasing,
facilitates local reasoning, decision procedures for expressive
fragments⇒ scalable (http://fbinfer.com).

I Natural use of cyclic proof: shape properties defined via
inductive predicates⇒ reason about entailment using cyclic
systems.

I Novel application of cyclic proof: proofs of termination for
programs that are fed the right heap.

40 / 41

http://fbinfer.com

Hoare Logic and Heaps Separation Logic Inductive Predicates Cyclic Proofs of Program Termination Conclusions

Further Reading

I Pym, O’Hearn. The Logic of Bunched Implications. 1999.
I Ishtiaq, O’Hearn. BI as an Assertion Language for Mutable

Data Structures. 2001.
I Reynolds. Separation Logic: A Logic for Shared Mutable Data

Structures 2001.
I Brotherston. Formalised Inductive Reasoning in the Logic of

Bunched Implications. 2007.
I Bornat, Brotherston, Calcagno. Cyclic Proofs of Program

Termination in Separation Logic. 2008.
I Rowe, Brotherston. Automatic Cyclic Termination Proofs for

Recursive Procedures in Separation Logic. 2017.

41 / 41

	Hoare Logic and Heaps
	Separation Logic
	Inductive Predicates
	Cyclic Proofs of Program Termination
	Conclusions

